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INTRODUCTION 

Interdigital arrays are the most popular means of producing 
acoustic surface waves on piezoelectric crystals, because of the 
direct transduction that takes place. Considerable effort has 
therefore been devoted to achieve an adequate characterization of 
their behavior; this has largely taken the direction of finding 
equivalent electrical circuits that model the port relations of 
the structure.  In the early and important letter by Krairojana- 
nan and Redwood,1 the Mason bulk-wave circuit was first applied 
to the surface wave case. Moreover, the acoustic transmission 
line portion was depicted as a spatially-distributed coaxial 
line,2 rather than in usual tee circui - form. This refinement 
lends a graphic quality to the network schematic and leads in a 
natural fashion to the concept of an analog network, to be de- 
scribed subsequently. 

The electrode and gap regions were represented by a series 
of identical transmission lines arranged mechanically in cascade; 
lines for either region were invested with a piezoelectric driv- 
ing source, and the other region considered piezoelectrically 
inert.  Both of these alternative arrangements place the piezo- 
electric sources at the edges of the array of fingers; however, 
this is not emphasized in the circuit picture, as the piezo net- 
work is attached to the center of the coaxial sheath. 

Other authors used a single transmission line (in lumped, 
tee form) to accomodate a periodic segment of gap-plus-electrode 
regions, with the piezoelectric sources located effectively at 
the centers of the electrodes,3 or the gaps.* Judd, Morse and 
Smith^ were apparently first to account for the discontinuities 
at the electrode edges, due to changes in mass-loading and elec- 
trical conditions; they used two acoustic lines per repeat-length 
having differing impedances and wavenumbers. The line lengths 
were equal to the corresponding geometrical lengths of electrode 
and gap, while both transmission lines were piezoelectrically 
excited by sources placed equivalently at the electrode edges. 
A similar treatment by Jones, Hartmann and Sturdivant" used two 
lines of differing impedance, but of identical wave number; the 
line representing the gap is inert, and the other is driven so 
that the electrode edges are the sites of the piezoelectric 
sources. 

Although alluded to in Reference 1 • Smith e_t aj_.3 first dis- 
cussed modifications of the electrical port input circuit arising 
from the nature of the transduction mechanism. A negative capa- 
citance appears in the bulk-wave input circuit if the electric 
field produced by the wave motion lies along the direction of the 
driving field, and is absent if the fields are perpendicular. 



Because neither the finger array nor the resulting surface wave 
produces a spatially unvarying field pattern, in general the 
fields will make an angle with respect to one another, and the 
angle will be a function of position in the sagittal plane. 
Hence, the composition of the electrical input network is not 
clear.  Smith et aK^ treated both limiting cases, which they 
referred to as^in-line' (fields parallel) and 'crossed-f ield' 
(fields normal). 
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Global equivalent networks, of the types mentioned, that 
characterize devices only as regards the immittances seen 4t the 
ports are not constrained to any detailed geometric or topologi- 
cal resemblance of the physical aspects of the devices.  Analog 
networks, which are locally equivalent circuits, are constrained 
by the requirement that their variables match those of the de- 
vices on a point-to-point basis insofar as oossible; this allow: 
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the network structure to be put down almost by inspection once 
the one-dimensional acoustic guiding structure and network com- 
ponents are determined.  Such networks have recently been intro- 
duced for bulk modes.° Their development follows from the sug- 
gestive form of the network schematic in Reference 2, and the use 
of microwave network formalism for acoustic problems.9 

ANALOG NETWORK REPRESENTATION 
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field is described in Reference 12. 

A catalog of network components modelling additional struc 
tural features such as grooves is still required. Availability 
of these additional components will extend the gamut of equiva 
lent networks that can be built up virtually by inspection.  E 
without auch a compilation, the analog formulation allows most 
surface wave devices, such as the recently reported surface acous- 
tic wave crystal resonatorl3 to be modelled directly. 
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CONCLUSIONS 

Analog equivalent networks modelling the generation and 
propagation of acoustic surface waves on piezoelectric crystals 
lend themselves to in-depth interpretations of the physical pro- 
cesses that occur.  Because they are valid continuously along 
the coordinate of propagation, modification of the circuit pic- 
ture to accomodate changes in the device structure is extremely 
simple and straightforward.  The modified network retains its 
physical clarity while remaining in the format compatible with 
computer-aided circuit design (CAD) programs. 
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